wordpress的圖片插件優(yōu)化防疫措施
前言
本項目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多種先進的聲紋識別模型,不排除以后會支持更多模型,同時本項目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多種數(shù)據(jù)預處理方法,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度間隔損失函數(shù)),對應項目中的AAMLoss,對特征向量和權重歸一化,對θ加上角度間隔m,角度間隔比余弦間隔在對角度的影響更加直接,除此之外,還支持AMLoss、ARMLoss、CELoss等多種損失函數(shù)。
源碼地址:VoiceprintRecognition-Pytorch
使用環(huán)境:
- Anaconda 3
- Python 3.8
- Pytorch 1.13.1
- Windows 10 or Ubuntu 18.04
項目特性
- 支持模型:EcapaTdnn、TDNN、Res2Net、ResNetSE、ERes2Net、CAM++
- 支持池化層:AttentiveStatsPool(ASP)、SelfAttentivePooling(SAP)、TemporalStatisticsPooling(TSP)、TemporalAveragePooling(TAP)、TemporalStatsPool(TSTP)
- 支持損失函數(shù):AAMLoss、AMLoss、ARMLoss、CELoss
- 支持預處理方法:MelSpectrogram、Spectrogram、MFCC、Fbank
模型論文:
- EcapaTdnn:ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification
- PANNS:PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
- TDNN:Prediction of speech intelligibility with DNN-based performance measures
- Res2Net:Res2Net: A New Multi-scale Backbone Architecture
- ResNetSE:Squeeze-and-Excitation Networks
- CAMPPlus:CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking
- ERes2Net:An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification
模型下載
模型 | Params(M) | 預處理方法 | 數(shù)據(jù)集 | train speakers | threshold | EER | MinDCF |
---|---|---|---|---|---|---|---|
CAM++ | 7.5 | Fbank | CN-Celeb | 2796 | 0.26 | 0.09557 | 0.53516 |
ERes2Net | 8.2 | Fbank | CN-Celeb | 2796 | |||
ResNetSE | 9.4 | Fbank | CN-Celeb | 2796 | 0.20 | 0.10149 | 0.55185 |
EcapaTdnn | 6.7 | Fbank | CN-Celeb | 2796 | 0.24 | 0.10163 | 0.56543 |
TDNN | 3.2 | Fbank | CN-Celeb | 2796 | 0.23 | 0.12182 | 0.62141 |
Res2Net | 6.6 | Fbank | CN-Celeb | 2796 | 0.22 | 0.14390 | 0.67961 |
ERes2Net | 8.2 | Fbank | 其他數(shù)據(jù)集 | 20W | 0.36 | 0.02936 | 0.18355 |
CAM++ | 7.5 | Fbank | 其他數(shù)據(jù)集 | 20W | 0.29 | 0.04765 | 0.31436 |
說明:
- 評估的測試集為CN-Celeb的測試集,包含196個說話人。
安裝環(huán)境
- 首先安裝的是Pytorch的GPU版本,如果已經(jīng)安裝過了,請?zhí)^。
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
- 安裝ppvector庫。
使用pip安裝,命令如下:
python -m pip install mvector -U -i https://pypi.tuna.tsinghua.edu.cn/simple
建議源碼安裝,源碼安裝能保證使用最新代碼。
git clone https://github.com/yeyupiaoling/VoiceprintRecognition-Pytorch.git
cd VoiceprintRecognition-Pytorch/
python setup.py install
創(chuàng)建數(shù)據(jù)
本教程筆者使用的是CN-Celeb,這個數(shù)據(jù)集一共有約3000個人的語音數(shù)據(jù),有65W+條語音數(shù)據(jù),下載之后要解壓數(shù)據(jù)集到dataset
目錄,另外如果要評估,還需要下載CN-Celeb的測試集。如果讀者有其他更好的數(shù)據(jù)集,可以混合在一起使用,但最好是要用python的工具模塊aukit處理音頻,降噪和去除靜音。
首先是創(chuàng)建一個數(shù)據(jù)列表,數(shù)據(jù)列表的格式為<語音文件路徑\t語音分類標簽>
,創(chuàng)建這個列表主要是方便之后的讀取,也是方便讀取使用其他的語音數(shù)據(jù)集,語音分類標簽是指說話人的唯一ID,不同的語音數(shù)據(jù)集,可以通過編寫對應的生成數(shù)據(jù)列表的函數(shù),把這些數(shù)據(jù)集都寫在同一個數(shù)據(jù)列表中。
執(zhí)行create_data.py
程序完成數(shù)據(jù)準備。
python create_data.py
執(zhí)行上面的程序之后,會生成以下的數(shù)據(jù)格式,如果要自定義數(shù)據(jù),參考如下數(shù)據(jù)列表,前面是音頻的相對路徑,后面的是該音頻對應的說話人的標簽,就跟分類一樣。自定義數(shù)據(jù)集的注意,測試數(shù)據(jù)列表的ID可以不用跟訓練的ID一樣,也就是說測試的數(shù)據(jù)的說話人可以不用出現(xiàn)在訓練集,只要保證測試數(shù)據(jù)列表中同一個人相同的ID即可。
dataset/CN-Celeb2_flac/data/id11999/recitation-03-019.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-023.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-025.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-04-014.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-030.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-032.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-028.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-031.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-05-003.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-04-017.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-016.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-09-001.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-05-010.flac 2795
修改預處理方法
配置文件中默認使用的是Fbank預處理方法,如果要使用其他預處理方法,可以修改配置文件中的安裝下面方式修改,具體的值可以根據(jù)自己情況修改。如果不清楚如何設置參數(shù),可以直接刪除該部分,直接使用默認值。
# 數(shù)據(jù)預處理參數(shù)
preprocess_conf:# 音頻預處理方法,支持:MelSpectrogram、Spectrogram、MFCC、Fbankfeature_method: 'Fbank'# 設置API參數(shù),更參數(shù)查看對應API,不清楚的可以直接刪除該部分,直接使用默認值method_args:sample_frequency: 16000num_mel_bins: 80
訓練模型
使用train.py
訓練模型,本項目支持多個音頻預處理方式,通過configs/ecapa_tdnn.yml
配置文件的參數(shù)preprocess_conf.feature_method
可以指定,MelSpectrogram
為梅爾頻譜,Spectrogram
為語譜圖,MFCC
梅爾頻譜倒譜系數(shù)等等。通過參數(shù)augment_conf_path
可以指定數(shù)據(jù)增強方式。訓練過程中,會使用VisualDL保存訓練日志,通過啟動VisualDL可以隨時查看訓練結果,啟動命令visualdl --logdir=log --host 0.0.0.0
# 單卡訓練
CUDA_VISIBLE_DEVICES=0 python train.py
# 多卡訓練
CUDA_VISIBLE_DEVICES=0,1 torchrun --standalone --nnodes=1 --nproc_per_node=2 train.py
訓練輸出日志:
[2023-08-05 09:52:06.497988 INFO ] utils:print_arguments:13 - ----------- 額外配置參數(shù) -----------
[2023-08-05 09:52:06.498094 INFO ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-08-05 09:52:06.498149 INFO ] utils:print_arguments:15 - do_eval: True
[2023-08-05 09:52:06.498191 INFO ] utils:print_arguments:15 - local_rank: 0
[2023-08-05 09:52:06.498230 INFO ] utils:print_arguments:15 - pretrained_model: None
[2023-08-05 09:52:06.498269 INFO ] utils:print_arguments:15 - resume_model: None
[2023-08-05 09:52:06.498306 INFO ] utils:print_arguments:15 - save_model_path: models/
[2023-08-05 09:52:06.498342 INFO ] utils:print_arguments:15 - use_gpu: True
[2023-08-05 09:52:06.498378 INFO ] utils:print_arguments:16 - ------------------------------------------------
[2023-08-05 09:52:06.513761 INFO ] utils:print_arguments:18 - ----------- 配置文件參數(shù) -----------
[2023-08-05 09:52:06.513906 INFO ] utils:print_arguments:21 - dataset_conf:
[2023-08-05 09:52:06.513957 INFO ] utils:print_arguments:24 - dataLoader:
[2023-08-05 09:52:06.513995 INFO ] utils:print_arguments:26 - batch_size: 64
[2023-08-05 09:52:06.514031 INFO ] utils:print_arguments:26 - num_workers: 4
[2023-08-05 09:52:06.514066 INFO ] utils:print_arguments:28 - do_vad: False
[2023-08-05 09:52:06.514101 INFO ] utils:print_arguments:28 - enroll_list: dataset/enroll_list.txt
[2023-08-05 09:52:06.514135 INFO ] utils:print_arguments:24 - eval_conf:
[2023-08-05 09:52:06.514169 INFO ] utils:print_arguments:26 - batch_size: 1
[2023-08-05 09:52:06.514203 INFO ] utils:print_arguments:26 - max_duration: 20
[2023-08-05 09:52:06.514237 INFO ] utils:print_arguments:28 - max_duration: 3
[2023-08-05 09:52:06.514274 INFO ] utils:print_arguments:28 - min_duration: 0.5
[2023-08-05 09:52:06.514308 INFO ] utils:print_arguments:28 - noise_aug_prob: 0.2
[2023-08-05 09:52:06.514342 INFO ] utils:print_arguments:28 - noise_dir: dataset/noise
[2023-08-05 09:52:06.514374 INFO ] utils:print_arguments:28 - num_speakers: 3242
[2023-08-05 09:52:06.514408 INFO ] utils:print_arguments:28 - sample_rate: 16000
[2023-08-05 09:52:06.514441 INFO ] utils:print_arguments:28 - speed_perturb: True
[2023-08-05 09:52:06.514475 INFO ] utils:print_arguments:28 - target_dB: -20
[2023-08-05 09:52:06.514508 INFO ] utils:print_arguments:28 - train_list: dataset/train_list.txt
[2023-08-05 09:52:06.514542 INFO ] utils:print_arguments:28 - trials_list: dataset/trials_list.txt
[2023-08-05 09:52:06.514575 INFO ] utils:print_arguments:28 - use_dB_normalization: True
[2023-08-05 09:52:06.514609 INFO ] utils:print_arguments:21 - loss_conf:
[2023-08-05 09:52:06.514643 INFO ] utils:print_arguments:24 - args:
[2023-08-05 09:52:06.514678 INFO ] utils:print_arguments:26 - easy_margin: False
[2023-08-05 09:52:06.514713 INFO ] utils:print_arguments:26 - margin: 0.2
[2023-08-05 09:52:06.514746 INFO ] utils:print_arguments:26 - scale: 32
[2023-08-05 09:52:06.514779 INFO ] utils:print_arguments:24 - margin_scheduler_args:
[2023-08-05 09:52:06.514814 INFO ] utils:print_arguments:26 - final_margin: 0.3
[2023-08-05 09:52:06.514848 INFO ] utils:print_arguments:28 - use_loss: AAMLoss
[2023-08-05 09:52:06.514882 INFO ] utils:print_arguments:28 - use_margin_scheduler: True
[2023-08-05 09:52:06.514915 INFO ] utils:print_arguments:21 - model_conf:
[2023-08-05 09:52:06.514950 INFO ] utils:print_arguments:24 - backbone:
[2023-08-05 09:52:06.514984 INFO ] utils:print_arguments:26 - embd_dim: 192
[2023-08-05 09:52:06.515017 INFO ] utils:print_arguments:26 - pooling_type: ASP
[2023-08-05 09:52:06.515050 INFO ] utils:print_arguments:24 - classifier:
[2023-08-05 09:52:06.515084 INFO ] utils:print_arguments:26 - num_blocks: 0
[2023-08-05 09:52:06.515118 INFO ] utils:print_arguments:21 - optimizer_conf:
[2023-08-05 09:52:06.515154 INFO ] utils:print_arguments:28 - learning_rate: 0.001
[2023-08-05 09:52:06.515188 INFO ] utils:print_arguments:28 - optimizer: Adam
[2023-08-05 09:52:06.515221 INFO ] utils:print_arguments:28 - scheduler: CosineAnnealingLR
[2023-08-05 09:52:06.515254 INFO ] utils:print_arguments:28 - scheduler_args: None
[2023-08-05 09:52:06.515289 INFO ] utils:print_arguments:28 - weight_decay: 1e-06
[2023-08-05 09:52:06.515323 INFO ] utils:print_arguments:21 - preprocess_conf:
[2023-08-05 09:52:06.515357 INFO ] utils:print_arguments:28 - feature_method: MelSpectrogram
[2023-08-05 09:52:06.515390 INFO ] utils:print_arguments:24 - method_args:
[2023-08-05 09:52:06.515426 INFO ] utils:print_arguments:26 - f_max: 14000.0
[2023-08-05 09:52:06.515460 INFO ] utils:print_arguments:26 - f_min: 50.0
[2023-08-05 09:52:06.515493 INFO ] utils:print_arguments:26 - hop_length: 320
[2023-08-05 09:52:06.515527 INFO ] utils:print_arguments:26 - n_fft: 1024
[2023-08-05 09:52:06.515560 INFO ] utils:print_arguments:26 - n_mels: 64
[2023-08-05 09:52:06.515593 INFO ] utils:print_arguments:26 - sample_rate: 16000
[2023-08-05 09:52:06.515626 INFO ] utils:print_arguments:26 - win_length: 1024
[2023-08-05 09:52:06.515660 INFO ] utils:print_arguments:21 - train_conf:
[2023-08-05 09:52:06.515694 INFO ] utils:print_arguments:28 - log_interval: 100
[2023-08-05 09:52:06.515728 INFO ] utils:print_arguments:28 - max_epoch: 30
[2023-08-05 09:52:06.515761 INFO ] utils:print_arguments:30 - use_model: EcapaTdnn
[2023-08-05 09:52:06.515794 INFO ] utils:print_arguments:31 - ------------------------------------------------
······
===============================================================================================
Layer (type:depth-idx) Output Shape Param #
===============================================================================================
Sequential [1, 9726] --
├─EcapaTdnn: 1-1 [1, 192] --
│ └─Conv1dReluBn: 2-1 [1, 512, 98] --
│ │ └─Conv1d: 3-1 [1, 512, 98] 163,840
│ │ └─BatchNorm1d: 3-2 [1, 512, 98] 1,024
│ └─Sequential: 2-2 [1, 512, 98] --
│ │ └─Conv1dReluBn: 3-3 [1, 512, 98] 263,168
│ │ └─Res2Conv1dReluBn: 3-4 [1, 512, 98] 86,912
│ │ └─Conv1dReluBn: 3-5 [1, 512, 98] 263,168
│ │ └─SE_Connect: 3-6 [1, 512, 98] 262,912
│ └─Sequential: 2-3 [1, 512, 98] --
│ │ └─Conv1dReluBn: 3-7 [1, 512, 98] 263,168
│ │ └─Res2Conv1dReluBn: 3-8 [1, 512, 98] 86,912
│ │ └─Conv1dReluBn: 3-9 [1, 512, 98] 263,168
│ │ └─SE_Connect: 3-10 [1, 512, 98] 262,912
│ └─Sequential: 2-4 [1, 512, 98] --
│ │ └─Conv1dReluBn: 3-11 [1, 512, 98] 263,168
│ │ └─Res2Conv1dReluBn: 3-12 [1, 512, 98] 86,912
│ │ └─Conv1dReluBn: 3-13 [1, 512, 98] 263,168
│ │ └─SE_Connect: 3-14 [1, 512, 98] 262,912
│ └─Conv1d: 2-5 [1, 1536, 98] 2,360,832
│ └─AttentiveStatsPool: 2-6 [1, 3072] --
│ │ └─Conv1d: 3-15 [1, 128, 98] 196,736
│ │ └─Conv1d: 3-16 [1, 1536, 98] 198,144
│ └─BatchNorm1d: 2-7 [1, 3072] 6,144
│ └─Linear: 2-8 [1, 192] 590,016
│ └─BatchNorm1d: 2-9 [1, 192] 384
├─SpeakerIdentification: 1-2 [1, 9726] 1,867,392
===============================================================================================
Total params: 8,012,992
Trainable params: 8,012,992
Non-trainable params: 0
Total mult-adds (M): 468.81
===============================================================================================
Input size (MB): 0.03
Forward/backward pass size (MB): 10.36
Params size (MB): 32.05
Estimated Total Size (MB): 42.44
===============================================================================================
[2023-08-05 09:52:08.084231 INFO ] trainer:train:388 - 訓練數(shù)據(jù):874175
[2023-08-05 09:52:09.186542 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [0/13659], loss: 11.95824, accuracy: 0.00000, learning rate: 0.00100000, speed: 58.09 data/sec, eta: 5 days, 5:24:08
[2023-08-05 09:52:22.477905 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [100/13659], loss: 10.35675, accuracy: 0.00278, learning rate: 0.00100000, speed: 481.65 data/sec, eta: 15:07:15
[2023-08-05 09:52:35.948581 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [200/13659], loss: 10.22089, accuracy: 0.00505, learning rate: 0.00100000, speed: 475.27 data/sec, eta: 15:19:12
[2023-08-05 09:52:49.249098 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [300/13659], loss: 10.00268, accuracy: 0.00706, learning rate: 0.00100000, speed: 481.45 data/sec, eta: 15:07:11
[2023-08-05 09:53:03.716015 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [400/13659], loss: 9.76052, accuracy: 0.00830, learning rate: 0.00100000, speed: 442.74 data/sec, eta: 16:26:16
[2023-08-05 09:53:18.258807 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [500/13659], loss: 9.50189, accuracy: 0.01060, learning rate: 0.00100000, speed: 440.46 data/sec, eta: 16:31:08
[2023-08-05 09:53:31.618354 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [600/13659], loss: 9.26083, accuracy: 0.01256, learning rate: 0.00100000, speed: 479.50 data/sec, eta: 15:10:12
[2023-08-05 09:53:45.439642 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [700/13659], loss: 9.03548, accuracy: 0.01449, learning rate: 0.00099999, speed: 463.63 data/sec, eta: 15:41:08
VisualDL頁面:
評估模型
訓練結束之后會保存預測模型,我們用預測模型來預測測試集中的音頻特征,然后使用音頻特征進行兩兩對比,計算EER和MinDCF。
python eval.py
輸出類似如下:
······
------------------------------------------------
W0425 08:27:32.057426 17654 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:27:32.065165 17654 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2023-03-16 20:20:47.195908 INFO ] trainer:evaluate:341 - 成功加載模型:models/EcapaTdnn_Fbank/best_model/model.pth
100%|███████████████████████████| 84/84 [00:28<00:00, 2.95it/s]
開始兩兩對比音頻特征...
100%|███████████████████████████| 5332/5332 [00:05<00:00, 1027.83it/s]
評估消耗時間:65s,threshold:0.26,EER: 0.14739, MinDCF: 0.41999
聲紋對比
下面開始實現(xiàn)聲紋對比,創(chuàng)建infer_contrast.py
程序,編寫infer()
函數(shù),在編寫模型的時候,模型是有兩個輸出的,第一個是模型的分類輸出,第二個是音頻特征輸出。所以在這里要輸出的是音頻的特征值,有了音頻的特征值就可以做聲紋識別了。我們輸入兩個語音,通過預測函數(shù)獲取他們的特征數(shù)據(jù),使用這個特征數(shù)據(jù)可以求他們的對角余弦值,得到的結果可以作為他們相識度。對于這個相識度的閾值threshold
,讀者可以根據(jù)自己項目的準確度要求進行修改。
python infer_contrast.py --audio_path1=audio/a_1.wav --audio_path2=audio/b_2.wav
輸出類似如下:
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:13 - ----------- 額外配置參數(shù) -----------
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - audio_path1: dataset/a_1.wav
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - audio_path2: dataset/b_2.wav
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:29:10.006249 21121 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:29:10.008555 21121 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加載模型參數(shù)和優(yōu)化方法參數(shù):models/EcapaTdnn_Fbank/best_model/model.pth
audio/a_1.wav 和 audio/b_2.wav 不是同一個人,相似度為:-0.09565544128417969
聲紋識別
在上面的聲紋對比的基礎上,我們創(chuàng)建infer_recognition.py
實現(xiàn)聲紋識別。同樣是使用上面聲紋對比的infer()
預測函數(shù),通過這兩個同樣獲取語音的特征數(shù)據(jù)。 不同的是筆者增加了load_audio_db()
和register()
,以及recognition()
,第一個函數(shù)是加載聲紋庫中的語音數(shù)據(jù),這些音頻就是相當于已經(jīng)注冊的用戶,他們注冊的語音數(shù)據(jù)會存放在這里,如果有用戶需要通過聲紋登錄,就需要拿到用戶的語音和語音庫中的語音進行聲紋對比,如果對比成功,那就相當于登錄成功并且獲取用戶注冊時的信息數(shù)據(jù)。第二個函數(shù)register()
其實就是把錄音保存在聲紋庫中,同時獲取該音頻的特征添加到待對比的數(shù)據(jù)特征中。最后recognition()
函數(shù)中,這個函數(shù)就是將輸入的語音和語音庫中的語音一一對比。
有了上面的聲紋識別的函數(shù),讀者可以根據(jù)自己項目的需求完成聲紋識別的方式,例如筆者下面提供的是通過錄音來完成聲紋識別。首先必須要加載語音庫中的語音,語音庫文件夾為audio_db
,然后用戶回車后錄音3秒鐘,然后程序會自動錄音,并使用錄音到的音頻進行聲紋識別,去匹配語音庫中的語音,獲取用戶的信息。通過這樣方式,讀者也可以修改成通過服務請求的方式完成聲紋識別,例如提供一個API供APP調(diào)用,用戶在APP上通過聲紋登錄時,把錄音到的語音發(fā)送到后端完成聲紋識別,再把結果返回給APP,前提是用戶已經(jīng)使用語音注冊,并成功把語音數(shù)據(jù)存放在audio_db
文件夾中。
python infer_recognition.py
輸出類似如下:
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:13 - ----------- 額外配置參數(shù) -----------
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - audio_db_path: audio_db/
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - record_seconds: 3
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:30:13.257884 23889 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:30:13.260191 23889 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加載模型參數(shù)和優(yōu)化方法參數(shù):models/ecapa_tdnn/model.pth
Loaded 沙瑞金 audio.
Loaded 李達康 audio.
請選擇功能,0為注冊音頻到聲紋庫,1為執(zhí)行聲紋識別:0
按下回車鍵開機錄音,錄音3秒中:
開始錄音......
錄音已結束!
請輸入該音頻用戶的名稱:夜雨飄零
請選擇功能,0為注冊音頻到聲紋庫,1為執(zhí)行聲紋識別:1
按下回車鍵開機錄音,錄音3秒中:
開始錄音......
錄音已結束!
識別說話的為:夜雨飄零,相似度為:0.920434
其他版本
- Tensorflow:VoiceprintRecognition-Tensorflow
- PaddlePaddle:VoiceprintRecognition-PaddlePaddle
- Keras:VoiceprintRecognition-Keras
參考資料
- https://github.com/PaddlePaddle/PaddleSpeech
- https://github.com/yeyupiaoling/PaddlePaddle-MobileFaceNets
- https://github.com/yeyupiaoling/PPASR
- https://github.com/alibaba-damo-academy/3D-Speaker